

Monitoring of PV Village Power Supply Systems in China

G. Bopp, A. Steinhüser, Fraunhofer ISE, Germany
H. Gabler, ZSW, Germany
<u>F. Haugwitz</u>, H. Müller, GTZ, Beijing / China
Liu Hong, Li Zhiming, QNERI, Xining / China

Rural Electrification in China: Electricity for 30 million people

Background

- Chinese Brightness Program: Renewable energy for 23
 millions people between 1996 and 2010
- Over the past two years 662 villages have been electrified with PV and PV/Diesel Hybrid systems (10 to 50 kW), total installed capacity 18.5 MW
- Additionally approx. 170 PV/Diesel Hybrid systems will be financed by the German development bank KfW
- Since 2001 the German Agency for Technical Cooperation (GTZ) has been providing technical assistance in the provinces of Yunnan, Qinghai, Gansu and Tibet

Fraunhofer Institut Solare Energiesysteme

History of PV Village Monitoring in Qinghai

- 2002-2004: QBEC installed 112 village PV / PV Hybrid Systems
- Oct. 2004: Selection / Procurement
- March 2005: Training / Installation
- Oct. 2005: Training Statistical Eval.
- Parallel statistical evaluation in Qinghai & Germany until June 2006

Objectives of Monitoring

- Does the generated electricity meet the demand of the township population?
- Reliability of components?
- Efficiency of components?
- Does system or component failures occur?
- Extension of the regular maintenance period?
- Improvement of the system layout/design?
- Optimisation of components?

Four different Types of Monitoring

- Written Reports
- Small Data Acquisition System (DAS)
 - Full Size Data Acquisition System (DAS)
 - Mobile Measurement Equipment

Small Data Acquisition Systems (installed in 7 Townships)

- Automatic data acquisition of 8 signals
- Automatic data transfer by email via analogue telephone line to a data server each night
- Alternatively a memory card will be send by post to QNERI
- With a password the data are available for evaluation and processing

Block Diagram of Measuring Points

Full Size Data Acquistion Systems (installed in 5 Townships)

- Automatic data acquisition of 15 signals
- Manual data transfer via analogue telephone modem from QNERI every day
- Alternatively a memory card will be send by post to QNERI
- QNERI transfer the data into a database

Block Diagram of Measuring Points

Isolation Amplifier Additional Measurements:Solar Irradiation, Ambient Temperature, PV-Module Temperature, Battery Temperature, Wind Speed

Main Features of Kesheng Township, Qinghai Province

- 450 km away from the provincial capital, 80 km of this distance is a field path
- 484 households planned, actually only 300
- 40 kW PV generator
- 220 VDC battery voltage, 858 kWh battery capacity
- 2 Inverter 16 kW and 24 kW respectively
- 113 kWh average daily energy consumption

Daily Consumption, Theoretical Energy and Performance Ratio

Solar Irradiation and Output Power (sunny day)

Solar Irradiation and Output Power (cloudy day)

Conclusion

- Energy management is done manually by the operator according to weather conditions
- Average monthly performance ratio (ratio between theoretical available solar energy and actually consumed energy) of 0.5 is acceptable
- A performance ratio of 0,7 can be achieved, e.g. extending of daily operating periods of inverters, to connect more houses, higher efficiencies of components
- To this end further detailed data analysis of Kesheng and other monitored townships are necessary

Fraunhofer Institut Solare Energiesysteme

